Contents

1 General remarks .. 5

2 Safety ... 6
 2.1 Safety remarks .. 6
 2.1.1 Signal words .. 6
 2.1.2 Pictograms .. 7
 2.2 Qualification of deployed personnel .. 7
 2.3 Intended application ... 7
 2.4 Application not in compliance with the intended use ... 9

3 Delivery, transport, storage and disposal ... 10
 3.1 Delivery ... 10
 3.2 Transport .. 10
 3.3 Storage .. 10
 3.3.1 Storage location ... 11
 3.3.2 Storage of couplings / flexible elements ... 11
 3.4 Disposal .. 11

4 Technical Description .. 12
 4.1 Characteristics .. 12
 4.2 Specifications .. 12

5 Alignment of the units being connected .. 13
 5.1 Axial alignment ... 13
 5.2 Radial alignment .. 14
 5.3 Angular alignment .. 16

6 Mounting ... 17
 6.1 General assembly instructions ... 17
 6.2 Mounting the hub .. 18
 6.2.1 Mounting the hub with feather key .. 18
 6.2.2 Mounting the hub with oil interference fit ... 20
 6.3 Aligning the units .. 22
 6.4 Mounting the rubber element assembly and the ventilation plate to the flywheel ... 23
 6.5 Mounting the flange .. 24
 6.6 Mounting the links .. 25
 6.7 After completed mounting .. 28

7 Operation .. 29
 7.1 Operating faults, root causes and remedy .. 29
 7.2 Admissible overall misalignment of the coupling .. 30
8 Care and maintenance ... 31
 8.1 Work to be performed .. 31
 8.1.1 Cleaning the coupling.. 31
 8.1.2 Visual inspection of the coupling .. 31
 8.1.3 Visual inspection of links .. 31
 8.1.4 Visual inspection of the rubber elements / rubber segments 32
 8.1.5 Inspection of the screw connections 32
 8.2 Replacing defective parts .. 32

9 Dismantling .. 33
 9.1 General dismantling instructions ... 33
 9.2 Dismantling the coupling .. 34
 9.2.1 Dismantling the links .. 34
 9.2.2 Dismantling the flange ... 34
 9.2.3 Dismantling the rubber element assembly and the ventilation plate .. 34
 9.3 Dismantling the hubs (if necessary) .. 34
 9.3.1 Dismantling the hub with feather key 34
 9.3.2 Dismantling the hub with oil interference fit 35
 9.4 Reassembling the coupling .. 36
 9.5 Dismantling the coupling for replacing the wear parts 37
 9.5.1 Dismantling the links .. 37
 9.5.2 Dismantling the rubber element assembly and the ventilation plate .. 37
 9.5.3 Disassembling the rubber element assembly 38
 9.5.4 Reassembling the rubber element assembly 38
 9.5.5 Reassembling the coupling ... 38

10 Wearing and spare parts .. 39

11 Annex .. 40
 11.1 CENTA data sheet D13-013 (lubricated screw connections) 40
Index of illustrations

Fig. 5-1 Axial misalignment ... 13
Fig. 5-2 Radial misalignment ... 14
Fig. 5-3 Angular misalignment ... 16
Fig. 6-1 Mounting the hub with feather key 18
Fig. 6-2 Mounting the hub with oil interference fit 20
Fig. 6-3 Mounting the rubber element assembly and the ventilation plate to the flywheel ... 23
Fig. 6-4 Mounting the flange ... 24
Fig. 6-5 Mounting the links (counterclockwise rotation) 26
Fig. 9-1 Disassembling the rubber element assembly 38

Index of tables

Table 2-1 Shape and size of ventilation holes 8
Table 5-1 Permissible radial alignment tolerance 15
Table 5-2 Permissible angular alignment tolerance 16
Table 6-1 Guide to links ... 25
Table 7-1 Troubleshooting table ... 29
1 General remarks

These assembly and operating instructions form a constituent part of the coupling delivery and must be kept in an easily accessible place at all times.

CENTA products are developed and produced to quality standard DIN EN ISO 9001:2000.

In the interests of further development, CENTA reserves the right to make technical changes.

<table>
<thead>
<tr>
<th>IMPORTANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTA is unable to accept liability for damage and operating faults caused by failure to observe the operating instructions.</td>
</tr>
</tbody>
</table>

These operating instructions are protected under copyright to CENTA Antriebe Kirschey GmbH.

In case of technical questions, please enquire with our head office:

CENTA Antriebe Kirschey GmbH
Bergische Strasse 7
42781 Haan
GERMANY
Phone +49-2129-912-0
Fax +49-2129-2790
centa@centa.de
www.centa.info
2 Safety

The purpose of these operating instructions is to enable users to:

- use the coupling safely and correctly
- maximize efficiency
- ensure that care and maintenance are carried out correctly

For this reason, these operating instructions must be thoroughly read and understood prior to work on and with the coupling.

WARNING

Injury and material damage can occur as a result of:

- Failure to adhere to the safety and accident prevention regulations valid at the relevant installation site

The safety and accident prevention regulations valid at the installation site in question must be adhered to when performing any of the tasks described in these operating instructions.

2.1 Safety remarks

In these operating instructions, safety remarks are indicated by a pictogram and a signal word.

2.1.1 Signal words

The following signal words are used in the safety remarks:

- **DANGER**
 Denotes the immediate threat of danger.
 If not prevented, fatal or extremely serious injuries can result.

- **WARNING**
 Denotes a potentially dangerous situation.
 If not prevented, fatal or extremely serious injuries can result.

- **CAUTION**
 Denotes a potentially dangerous situation.
 If not prevented, minor injuries and/damage to property may result.

- **IMPORTANT**
 Denotes application tips and particularly useful information. This is not a signal word denoting a dangerous or damaging situation.
2.1.2 Pictograms
Possible pictograms in the safety precautions:

- Warning of a hazardous area
- Do not switch
- Use protective gloves
- Use protective goggles

2.2 Qualification of deployed personnel
All the work described in these operating instructions may only be performed by authorized persons with adequate training and instruction.

WARNING

Injury and material damage can occur as a result of:
- Work at the coupling which is not described in these instructions
- Only carry out work which is described in these operating instructions.

2.3 Intended application

WARNING

Injury and material damage can occur as a result of:
- Application not in compliance with the intended use
- The couplings are intended exclusively for use in accordance with the relevant design. They may only be used under the specified conditions.
WARNING

Injuries can occur as a result of:
- Contact with rotating parts

Shield the coupling in accordance with the applicable accident prevention regulations with an enclosure.

Exception:
The coupling is encased by the driving and driven units.

The scope of delivery provided by CENTA does not include a protective enclosure.

This enclosure must fulfill the following criteria:
- Provide protection against persons gaining access to rotating parts
- Restrain any rotating parts which may be work loose
- Guarantee sufficient ventilation for the coupling

This enclosure must be made of stable steel components. In order to ensure adequate ventilation for the coupling, the enclosure must be fitted with regular openings. For safety reasons, these openings must not exceed the dimensions outlined in table 2-1.

<table>
<thead>
<tr>
<th>Component</th>
<th>Circular openings [mm]</th>
<th>Rectangular openings [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of the enclosure</td>
<td>Ø 8</td>
<td>☐ 8</td>
</tr>
<tr>
<td>Side elements of the enclosure</td>
<td>Ø 8</td>
<td>☐ 8</td>
</tr>
</tbody>
</table>

Table 2-1 Shape and size of ventilation holes

The enclosures must be positioned a minimum of 15 mm distant from rotating parts. The enclosure must be electrically conductive and be included in the equipotential bonding.

Before commencing long-term operation, the plant must successfully complete a test run.
2.4 Application not in compliance with the intended use

WARNING

<table>
<thead>
<tr>
<th>Injury and material damage can occur as a result of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Inadmissibly high torque</td>
</tr>
<tr>
<td>• Inadmissibly high or low speeds</td>
</tr>
<tr>
<td>• Exceeding the specified ambient temperature</td>
</tr>
<tr>
<td>• Inadmissible ambient medium</td>
</tr>
<tr>
<td>• Inadmissible coupling enclosure</td>
</tr>
<tr>
<td>• Exceeding the admissible overall misalignment values</td>
</tr>
</tbody>
</table>

Only use the coupling for the specified application.

CENTA bears no liability for damage resulting from application not in compliance with the intended use of the equipment. Should there be a change of plant parameters, the coupling design must be reviewed by CENTA (address see chapter 1).
3 Delivery, transport, storage and disposal

3.1 Delivery
After delivery, the coupling:
• must be checked for completeness and correctness of the delivery.
• must be examined for possible transport damage (which must be reported immediately to the carrier).

3.2 Transport

CAUTION
Injury and material damage can occur as a result of:
• Incorrect transportation of couplings
Ensure that the coupling is correctly transported.

CAUTION
Material damage to coupling components can occur as a result of:
• Contact with sharp-edged objects
Protect coupling components for transportation.
Only hoist coupling components with nylon belts or ropes.
Always cushion parts when supporting them from below.

Following transportation damage:
• Check the coupling carefully for damage.
• Consult the manufacturer (Address see chapter 1).

3.3 Storage

CAUTION
Material damage to elastic elements and rubber parts can occur as a result of:
• Incorrect storage
These parts must be stored laid flat and so they cannot distort, and protected from ozone, heat, light, moisture and solvents.

IMPORTANT
Rubber parts are marked where possible with their production date. From this date, they may only be stored for a maximum of 5 years.
3.3.1 Storage location

Requirements imposed on the storage location:
- Moderately ventilated and low in dust
- Dry (max. 65% humidity)
- Temperature stabilized (-10°C to +25°C)
- Free of ozone-producing devices such as light sources and electric motors
- Free of UV light sources and direct sunlight
- Do not store solvents and disinfectants, fuels or lubricants, acids, chemicals etc. in the same location

For more details, refer to DIN 7716.

3.3.2 Storage of couplings / flexible elements

- Unpack the parts.
- Check the packaging for damage. Replace if necessary.
- Check that the wax protection on steel components is intact. If necessary, patch or renew.
- Package the parts (for prolonged periods of storage, enclose desiccant and weld into film).
- Place the parts into storage.

3.4 Disposal

RECYCLING

Ensure safe, environmentally responsible disposal of operating supplies and exchange parts. For this, locally provided recycling facilities and regulations must be utilized.

For disposal, the coupling parts must be separated where possible and sorted according to material type.
4 Technical Description

4.1 Characteristics

Important features and advantages of the CENTAX-series N and NL:

- High compensation of misalignment in radial, axial and angular direction with low reaction forces.
- High torsional flexibility with linear characteristics. Various shore hardliness result in different torsional stiffness for optimum tuning of the torsionals and for damping of vibration and noise.
- High allowable energy loss by intensive inner and outer ventilation.
- Economical Design and well proven parts produced in series, low weight and favourable connecting dimensions.
- Low maintenance and low wear, long life expectancy, easy assembly and disassembly with radial removal of elements in-situ.
- Engine connection dimensions acc. SAE, special flanges are possible. The driven hubs made of high grade steel with connections for the various gear input shafts are available on short delivery.
- Torque range from 1.1 up to 25 kNm at the moment. For higher torques up to 650 kNm we recommend the larger sizes of the CENTAX-SEC series.

4.2 Specifications

The specifications can be found in the catalogue and the dimensions in the installation drawing.
5 Alignment of the units being connected

IMPORTANT

- Align the units during the assembly.
- Align the units that are to be connected as accurately as possible. In this way, a long service life for the coupling and maximum operating misalignment values can be achieved.
- The overall misalignment is composed of the misalignment and the operating misalignment. The permissible overall misalignment values can be found in the corresponding catalogue and must not be exceeded.
- All permissible alignment tolerances apply to arrangements at operating temperatures.
- If the arrangement would be aligned at a different temperature, there would be additional deviations in the arrangement, which were produced by the difference between the aligning and operating temperature. For alignment, this has to be taken into account.
- After completion of assembly, check the alignment of the coupling again and if necessary correct.

5.1 Axial alignment

Determine the axial misalignment (see Fig. 5-1).

- Take installation length \(L \) from the installation drawing.
- Align the units (installation dimension = \(L \pm \Delta K_A \text{ max} \)).

Permissible axial alignment tolerance: \(\Delta K_A \text{ max} = 0.5 \text{ mm} \)

Fig. 5-1 Axial misalignment
5.2 Radial alignment

CAUTION

Material damage to elastically installed motors can occur as a result of:
- Disregard during alignment of the extent by which the motor bearing settles
- During vertical alignment, take into account the extent by which the motor bearing settles. Please enquire about specifications for the degree of settling from the motor manufacturer or motor bearing manufacturer.

Measure the radial misalignment with a dial gauge (see Fig. 5-2).

- Attach the dial gauge to the hub.
- Set the sensor of the dial gauge radially against the centering.
- Turn the hub with dial gauge and flywheel slowly by 360°.
- Align the units (calculated deviation $\leq \Delta K_{R,\text{max}}$).

The permissible radial alignment tolerance $\Delta K_{R,\text{max}}$ can be found in the following table.

![Fig. 5-2 Radial misalignment](image)
Table 5-1 Permissible radial alignment tolerance

<table>
<thead>
<tr>
<th>Size</th>
<th>Shore hardness [Shore A]</th>
<th>$\Delta K_{R\max}$ [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>52; 56</td>
<td>45 / 50 / 60</td>
<td>±0.75</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>±0.25</td>
</tr>
<tr>
<td>64; 67</td>
<td>50 / 60</td>
<td>±0.75</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>±0.25</td>
</tr>
<tr>
<td>66; 69 - 71</td>
<td>50 / 60</td>
<td>±1.00</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>±0.30</td>
</tr>
<tr>
<td>72</td>
<td>50 / 60</td>
<td>±1.25</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>±0.38</td>
</tr>
<tr>
<td>75</td>
<td>50 / 60</td>
<td>±1.38</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>±0.43</td>
</tr>
</tbody>
</table>
5.3 **Angular alignment**

Measure the angular misalignment with a dial gauge (see Fig. 5-3).

- Attach the dial gauge to the hub.
- Position the sensor of the dial gauge radially against flat surface at a distance R.
- Turn the hub with dial gauge and flywheel slowly by 360°.

The maximum dial gauge deflection must not exceed the value $2\times S_{W\text{ max}}$ at any point. The permissible tolerance $S_{W\text{ max}}$ should be taken from the table below.

- Align the units (calculated deviation $\leq \Delta K_{W\text{ max}}$).

Permissible angular alignment tolerance:

$\Delta K_{W\text{ max}} = 0.2°$

![Fig. 5-3 Angular misalignment](image)

<table>
<thead>
<tr>
<th>SAE J620</th>
<th>R [mm]</th>
<th>$S_{W\text{ max}}$ [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>209</td>
<td>0.7</td>
</tr>
<tr>
<td>18</td>
<td>261</td>
<td>0.9</td>
</tr>
<tr>
<td>21</td>
<td>311</td>
<td>1.0</td>
</tr>
<tr>
<td>24</td>
<td>337</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table 5-2 Permissible angular alignment tolerance
6 Mounting

6.1 General assembly instructions

Any work method which impairs the safety of the coupling is prohibited. The user undertakes to notify the manufacturer immediately of any changes occurring at the coupling which could impair safety (address see chapter 1).

WARNING

Injuries can occur as a result of:
- Contact with rotating parts

Before starting work at the coupling, switch off the plant and secure against unintentional start-up.

WARNING

Injury and material damage can occur as a result of:
- Assembly of the coupling in the wrong sequence

Only ever assemble the coupling in the described sequence.

WARNING

Injury and material damage can occur as a result of:
- Falling coupling components

Secure coupling components against falling to the floor.

CAUTION

Material damage to coupling components can occur as a result of:
- Contact with sharp-edged objects

Protect coupling components for transportation. Only hoist coupling components with nylon belts or ropes. Always cushion parts when supporting them from below.

CAUTION

Material damage can occur as a result of:
- Soiled joint surfaces

The surfaces that are to be joined must be free of dirt, preservatives and lubricants.
6.2 Mounting the hub

- Mount the hubs as appropriate for the supplied design (see installation drawing).
 - Mounting the hub with feather key, see chapter 6.2.1.
 - Mounting the hub with oil interference fit, see chapter 6.2.2.

6.2.1 Mounting the hub with feather key

![Fig. 6-1 Mounting the hub with feather key](image_url)
Assembly and operating instructions

CENTAX-SEC Series NL
CX-52...75-NLFS-300

<table>
<thead>
<tr>
<th>Item</th>
<th>Info</th>
<th>Designation</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>Hub</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>Shaft</td>
<td>Customer part</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>Face of shaft (A)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>Face of hub (3)</td>
<td></td>
</tr>
</tbody>
</table>

CAUTION

Material damage can occur as a result of:
- Incorrect heating of the hubs/flange hubs

Heat the hubs/flange hubs steadily in an oil bath, a fan oven, on an electric hot plate, either inductive or with a flame (ring burner).

CAUTION

Injuries can occur as a result of:
- Hot coupling components

Use suitable protective gloves.

- Heat the flange hub (3) to a temperature of 170º - 200ºC.
- Push the hub (3) onto the shaft (A).

IMPORTANT

Face of shaft must not protrude to face of hub. Otherwise radial replacement of other coupling parts is not guaranteed.

CAUTION

Material damage can occur as a result of:
- Hot hubs/flange hubs

Before further mounting of hubs/flange hubs, allow them to cool to ambient temperature.
6.2.2 Mounting the hub with oil interference fit

WARNING

Injury and material damage can occur as a result of:

- Non-compliance with the operating instructions for the hydraulic pumps

Before carrying out work with the hydraulic pumps, do not fail to read their operating instructions. Only ever work with hydraulic pumps as described in their operating instructions.

WARNING

Injury and material damage can occur as a result of:

- Hydraulic fluid spraying out

Use protective goggles.

Fig. 6-2 Mounting the hub with oil interference fit
Assembly and operating instructions
CENTAX-SEC Series NL
CX-52...75-NLFS-300

<table>
<thead>
<tr>
<th>Item</th>
<th>Info</th>
<th>Designation</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>Hub</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Screw plug</td>
<td>G¼ or G¾ see installation drawing</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>Shaft</td>
<td>Customer part</td>
</tr>
<tr>
<td>a</td>
<td></td>
<td>Face of shaft (A)</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>Face of hub (3)</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>Thread</td>
<td>G¼ or G¾ see installation drawing</td>
</tr>
</tbody>
</table>

IMPORTANT

We recommend the following mounting fluids:

- **For mounting:**
 Oil with a viscosity 300 mm²/s at 20°C, e.g. SKF LHMF300
- **For dismantling:**
 Oil with a viscosity 900 mm²/s at 20°C, e.g. SKF LHDF900

- Lightly oil the cone of the shaft (A).
- Push the hub (3) onto the shaft (A).
- Remove the screw plug (9) from the hub (3).
- Connect the pump for expanding the hub (3) at thread G¼ or G¾ (c).
- Screw the pump for pushing on the hub to the shaft.
- Build up the oil pressure to push on the hub.

WARNING

Material damage can occur as a result of:

- Too fast increase of the expanding pressure in the hub

The increase of the expanding pressure may not exceed **35 bar/minute**.

WARNING

Material damage can occur as a result of:

- Insufficient expanding pressure in the hub

If the expanding pressure is too low, the necessary pushing pressure is too high.
- Build up the oil pressure for expanding the hub slowly.
- Build up the oil pressure alternately until the lift path (p up) of the hub (3) is reached (for p up and reference faces, see installation drawing).
- Decrease the oil pressure for expanding the hub.
- Remove the pump for expanding the hub from the hub (3).
- Maintain the oil pressure for pushing on the hub for one hour.
- Decrease the oil pressure for pushing on the hub.
- Remove the pump for pushing on the hub from the shaft.
- Turn the hub (3), allow the oil to run out of the thread G¼ or G¾ (c) and dispose of it correctly.
- Screw the screw plug (9) into the hub (3).

IMPORTANT

| Do not place a load on the hub for 24 hours. |

| IMPORTANT |
| Face of shaft must not protrude to face of hub. Otherwise radial replacement of other coupling parts is not guaranteed. |

6.3 Aligning the units

- Align the units to be connected (see chapter 5).
6.4 Mounting the rubber element assembly and the ventilation plate to the flywheel

Fig. 6-3 Mounting the rubber element assembly and the ventilation plate to the flywheel

<table>
<thead>
<tr>
<th>Item</th>
<th>Info</th>
<th>Designation</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Rubber element assembly</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Hub</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Ventilation plate</td>
<td></td>
</tr>
<tr>
<td>7; 8</td>
<td></td>
<td>Screw and washer</td>
<td>Customer part</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Flywheel</td>
<td>Customer part</td>
</tr>
</tbody>
</table>

- Push the ventilation plate (5) into the centring of the flywheel (B).
- Push the rubber element assembly (1) into the centring of the flywheel (B).
- Screw the rubber element assembly (1) and the ventilation plate (5) with screws and washers (7; 8) to the flywheel (B).
6.5 Mounting the flange

Fig. 6-4 Mounting the flange

<table>
<thead>
<tr>
<th>Item</th>
<th>Info</th>
<th>Designation</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Rubber element assembly</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>Hub</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Flange</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Screw ISO4762-10.9</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td>Centring fixture for link</td>
<td></td>
</tr>
</tbody>
</table>

- Push the flange (4) onto the centring of the hub (3). The centring fixture for the links (d) must be directed to the rubber element assembly (1).
- Screw the hub (3) with the screws (6) to the flange (4).
6.6 Mounting the links

IMPORTANT

- The links must be mounted in such a way that they are subjected to tensile load. A differentiation is made between the direction of rotation left (ccw) and right (cw), looking towards the driving end.
- Links are packaged in sets.
- All links of a link set are the same weight.
- Only mount links in complete sets "crosswise".
- Instructions on how to mount one link are provided following. Item numbers and the part illustrations may differ slightly from the delivery state.

The following table gives an overview of the number of size of the links used.

<table>
<thead>
<tr>
<th>CENTALINK Size</th>
<th>CENTAX Size</th>
<th>Link Size</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>48/50</td>
<td>50/52</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>55/56</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>60/65/67</td>
<td>64/65/67</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>68</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>-</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>-</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>69/70/71</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>72</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>75</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>176/276</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>-</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>-</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Table 6-1 Guide to links
Fig. 6-5 Mounting the links (counterclockwise rotation)
Assembly and operating instructions

CENTAX-SEC Series NL

CX-52...75-NLFS-300

<table>
<thead>
<tr>
<th>Item</th>
<th>Info</th>
<th>Designation</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td>Looking</td>
<td>at the flange</td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td>Hub for link</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Link unit assembly</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>Label „Flange“</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td>Label „Hub“</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
<td>The recess must be pointing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>towards the flange</td>
<td></td>
</tr>
<tr>
<td>2.1.2</td>
<td></td>
<td>Collar sleeve</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td>Bearing unit</td>
<td></td>
</tr>
<tr>
<td>2.2.1</td>
<td></td>
<td>PU bearing</td>
<td></td>
</tr>
<tr>
<td>2.2.2</td>
<td></td>
<td>Sliding bearing</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td></td>
<td>PTFE coating must be at the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>top</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>Washer for centrifugal</td>
<td>Dimensions as shown in parts list</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bearing</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
<td>Screw ISO4014-10.9</td>
<td>Dimensions as shown in parts list</td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td>Screw ISO4014-10.9</td>
<td>Dimensions as shown in parts list</td>
</tr>
<tr>
<td>2.6</td>
<td></td>
<td>Nut ISO4032-10</td>
<td>Dimensions as shown in parts list</td>
</tr>
<tr>
<td>2.7</td>
<td></td>
<td>Washer ISO7089 300HV</td>
<td>Dimensions as shown in parts list</td>
</tr>
<tr>
<td>2.8</td>
<td></td>
<td>Washer ISO7089 300HV</td>
<td>At link size 3 only, Dimensions as shown in parts list</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Flange</td>
<td></td>
</tr>
</tbody>
</table>
➢ Set the link unit (2) marked "Flange" (e) on the centring fixture of the flange (4).

➢ Position the link side with the inscription "Hub" (f) against the centring fixture of the hub for link (1.2).

➢ Tighten the screw of the connection link (2) to flange (3) and the screw of the connection link (2) to hub for link (1.2) alternately by hand until the centring fixture of the collar sleeve (2.1.2) is seated in the centring fixture of the hub for link (1.2) and flange (4).

➢ Repeat the mounting section above until all links (2) are mounted (for quantity of the links, please see the table guide to links).

➢ Fasten the screws (2.4 and 2.5) of the link unit (2) by required tightening torque "crosswise".

6.7 After completed mounting

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
</table>

Injury and material damage can occur as a result of:

- Loose screw connections

Before commissioning, the tightening torque levels of all screws must be checked and corrected if necessary.

Before commencing long-term operation, the plant must successfully complete a test run.
7 Operation

WARNING

Injury and material damage can occur as a result of:

- Worn coupling components

If the running noises change and/or vibrations occur turn the plant off immediately.

Determine the fault and its root cause, and remedy. The troubleshooting process is simplified by the table in the next chapter. On principle in case of a fault, an analysis of the entire plant should be performed.

7.1 Operating faults, root causes and remedy

<table>
<thead>
<tr>
<th>Faults</th>
<th>Possible root causes</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running noises or vibrations in the plant</td>
<td>Alignment error</td>
<td>1. Switch off the plant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Check alignment, correct if applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Trial run</td>
</tr>
<tr>
<td>Loose bolts</td>
<td></td>
<td>1. Switch off the plant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Check alignment, correct if applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Check screw torque levels and correct if</td>
</tr>
<tr>
<td></td>
<td></td>
<td>necessary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Trial run</td>
</tr>
<tr>
<td>Defective rubber bushes of the links</td>
<td></td>
<td>1. Switch off the plant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Replace the links</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Check alignment, correct if applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Trial run</td>
</tr>
<tr>
<td>Breakage of the rubber element/rubber</td>
<td>Alignment error or</td>
<td>1. Switch off the plant</td>
</tr>
<tr>
<td>segment</td>
<td>inadmissibly high torque</td>
<td>2. Exchange defective parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Check alignment, correct if applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Trial run</td>
</tr>
</tbody>
</table>

Table 7-1 Troubleshooting table

In case of uncertainty or if you have questions, please contact our head office (address see chapter 1).
7.2 Admissible overall misalignment of the coupling

The overall misalignment values can be found in the catalogue.
8 Care and maintenance

WARNING

Injuries can occur as a result of:

- Contact with rotating parts

Before starting work at the coupling, switch off the plant and secure against unintentional start-up.

The coupling requires low maintenance. We recommend a visual inspection at the regular scheduled maintenance intervals for the whole unit.

8.1 Work to be performed

8.1.1 Cleaning the coupling

- Remove any loose dirt from the coupling.

8.1.2 Visual inspection of the coupling

- Inspect the coupling for cracks, chips or missing parts.
- Replace faulty and missing parts.

8.1.3 Visual inspection of links

- Make a visual inspection of the links every 12 months.

Pay particular attention to the rubber bushes of the links. Squash folds and small cracks of up to 1 mm may be considered normal.

In the case of crack depths in excess of 1 mm, or detachment of the rubber-to-metal bond, the links must be exchanged.

IMPORTANT

Exchange the links:

- In the event of damage
- When replacing the rubber elements

IMPORTANT

- Links are packaged in sets.
- All links of a link set are the same weight.
- Only mount or replace links in complete sets.
8.1.4 Visual inspection of the rubber elements / rubber segments

<table>
<thead>
<tr>
<th>IMPORTANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchange the rubber elements / rubber segments in the event that:</td>
</tr>
<tr>
<td>• The wear specifications given in W00-002 are exceeded</td>
</tr>
</tbody>
</table>

- Assess the rubber elements / rubber segments as described in CENTA guidelines W00-002.

8.1.5 Inspection of the screw connections

- Check the tightening torque levels of all screws and if necessary, correct.

8.2 Replacing defective parts

- Remove the coupling as described in chapter 9.
- Replace wearing parts.
- Mount the coupling as described in chapter 6.
9 Dismantling

9.1 General dismantling instructions

Any work method which impairs the safety of the coupling is prohibited. The user undertakes to notify the manufacturer immediately of any changes occurring at the coupling which could impair safety (address see chapter 1).

IMPORTANT

The coupling is dismantled in reverse order to the assembly process. Please refer to the illustrations in chapter 6.

WARNING

Injuries can occur as a result of:
- Contact with rotating parts

Before starting work at the coupling, switch off the plant and secure against unintentional start-up.

WARNING

Injury and material damage can occur as a result of:
- Dismantling of the coupling in the wrong sequence

Only ever dismantle the coupling in the described sequence.

WARNING

Injury and material damage can occur as a result of:
- Falling coupling components

Secure coupling components against falling to the floor.

CAUTION

Material damage to coupling components can occur as a result of:
- Contact with sharp-edged objects

Protect coupling components for transportation. Only hoist coupling components with nylon belts or ropes. Always cushion parts when supporting them from below.

IMPORTANT

Use suitable lifting devices for dismantling.
9.2 Dismantling the coupling

9.2.1 Dismantling the links

See Fig. 6-5:

- Loosen the screws (2.4) of the connection link unit assembly (2) and hub for link (1.2) and remove together with the bearing unit (2.2) and the washer for centrifugal bearing (2.3).
- Loosen the screws (2.5) of the connection link unit assembly (2) and flange (4) and remove with washers (2.7; 2.8 for link size 3 only) and nuts (2.6).
- Remove the link unit assembly (2).
- Repeat the dismantle section above until all links are dismantled.

9.2.2 Dismantling the flange

See Fig. 6-4:

- Loosen and remove the screws (6) of the connection flange (4) and hub (3).
- Pull the flange (4) off the hub (3) and remove.

9.2.3 Dismantling the rubber element assembly and the ventilation plate

See Fig. 6-3:

- Loosen the screws (7) of the connection rubber element assembly (1), ventilation plate (5) and flywheel (B) and remove with washers (8).
- Pull the rubber element assembly (1) off the centring of the flywheel (B) and remove.
- Pull the ventilation plate (5) off the centring of the flywheel (B) and remove.

9.3 Dismantling the hubs (if necessary)

(See Fig. 6-1 and 6-2):

- Dismantle the hubs as appropriate for the supplied design (see installation drawing).
 - For dismantling the hub with feather key, see chapter 9.3.1.
 - For dismantling the hub with oil interference fit, see chapter 9.3.2.

9.3.1 Dismantling the hub with feather key

See Fig. 6-1:

- Remove the hub (3) from the shaft (A).
9.3.2 Dismantling the hub with oil interference fit

See Fig. 6-2:

WARNING

Injury and material damage can occur as a result of:

- Non-compliance with the operating instructions for the hydraulic pumps

Before carrying out work with the hydraulic pumps, do not fail to read their operating instructions. Only ever work with hydraulic pumps as described in their operating instructions.

WARNING

Injury and material damage can occur as a result of:

- Hydraulic fluid spraying out

Use protective goggles.

WARNING

Injuries and material damages can occur by:

- Suddenly loosening hubs

Secure the hub with a hydraulic tool against sudden axial loosening.

IMPORTANT

We recommend the following mounting fluids:

- For mounting:
 Oil with a viscosity 300 mm²/s at 20°C, e.g. SKF LHMF300

- For dismantling:
 Oil with a viscosity 900 mm²/s at 20°C, e.g. SKF LHDF900

- Remove the screw plug (9) from the hub (3).
- Connect the pump to the thread G¼ or G¾ (c) of the hub (3) to expand the hub.
- Screw the pump to the shaft (A), in order to hold the hub.
- Build up the oil pressure in order to hold the hub.
WARNING

Material damage can occur as a result of:

- Too fast increase of the expanding pressure in the hub

The increase of the expanding pressure may not exceed 35 bar/minute.

- Slowly build up the oil pressure to expand the hub ($p_{\text{max}} = 1500$ bar).
- Slowly reduce the oil pressure for holding the hub.
- Slowly reduce the oil pressure for expanding the hub.
- Repeat the above mounting section until the hub is completely released from the shaft.
- Remove the pump for holding the hub from the shaft (A).
- Remove the pump for expanding the hub from the hub (3).
- Turn the hub (3), drain the oil out of the thread $\frac{G}{4}$ or $\frac{G}{3}$ (c) and dispose correctly.
- Screw the screw plug (9) into the hub (3).

9.4 Reassembling the coupling

- Reassemble the coupling as described in chapter 6.
9.5 Dismantling the coupling for replacing the wear parts

9.5.1 Dismantling the links

See Fig. 6-5:
- Loosen the screws (2.4) of the connection link unit assembly (2) and hub for link (1.2) and remove together with the bearing unit (2.2) and the washer for centrifugal bearing (2.3).
- Loosen the screws (2.5) of the connection link unit assembly (2) and flange (4) and remove with washers (2.7; 2.8 for link size 3 only) and nuts (2.6).
- Remove the link unit assembly (2).
- Repeat the dismantle section above until all links are dismantled.

9.5.2 Dismantling the rubber element assembly and the ventilation plate

See Fig. 6-3:
- Loosen the screws (7) of the connection rubber element assembly (1), ventilation plate (5) and flywheel (B) and remove with washers (8).
- Pull the rubber element assembly (1) off the centring of the flywheel (B) and remove.
- Pull the ventilation plate (5) off the centring of the flywheel (B) and remove.
9.5.3 Disassembling the rubber element assembly

Fig. 9-1 Disassembling the rubber element assembly

<table>
<thead>
<tr>
<th>Item</th>
<th>Info</th>
<th>Designation</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td></td>
<td>Rubber element</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td>Hub for link</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td>Screw ISO4762-10.9</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td>Washer ISO7092-300HV</td>
<td></td>
</tr>
</tbody>
</table>

- Loosen the screws (1.3) of the connection rubber element (1.1) and hub for link (1.2) and remove with washers (1.4).
- Pull the hub for link (1.2) off the centring of the rubber element (1.1) and remove.

9.5.4 Reassembling the rubber element assembly

See Fig. 9-1:

- Push the hub for link (1.2) into the centring of the rubber element (1.1).
- Screw the rubber element (1.1) with screws (1.3) and washers (1.4) to the hub for link (1.2).

9.5.5 Reassembling the coupling

- Reassemble the coupling as described in chapter 6.
10 Wearing and spare parts

WARNING

Injury and material damage can occur as a result of:

- Mounting and/or utilization of non-original CENTA parts
- Never use parts from other manufacturers.

A stock of the most important wearing and spare parts is the most important condition to ensure that the coupling is functional and ready for operation at all times.

We only provide a warranty for CENTA original parts.

Wearing parts of this coupling:

- The link kits. These contain all screws, washers and bearing units. In the event that links or rubber bushes of the link are faulty, they must be replaced as a complete set.
- The rubber element(s). When exchanging the rubber element(s), all screw connections must be renewed. These must be ordered separately.

IMPORTANT

- Links are packaged in sets.
- All links of a link set are the same weight.
- Only mount or replace links in complete sets.

When ordering a spare, specify:

- Order no.
- Coupling order no.
- Drawing no.
11 Annex

11.1 CENTA data sheet D13-013 (lubricated screw connections)

Validity:
For all non-dynamically stressed screw connections with lubricated shank bolts in accordance with ISO 4014, ISO 4017 and ISO 4762 (DIN 912) with metric standard thread in accordance with DIN ISO 262, unless other specifications are given on CENTA documents.

Preparation of parts that are to be screwed together:
The joining areas must be free of dirt, preservatives and lubricants.

Preparation of screws that ARE NOT secured with liquid screw locking medium:
Give the screws extra lubrication with motor oil under the screw head and in the thread.

Preparation of screws that ARE secured with liquid screw locking medium:
Give the screws extra lubrication with motor oil under the screw head. Remove all grease from the thread.

Screw tightening method:
Screw in (by hand with torque wrench).

<table>
<thead>
<tr>
<th>d</th>
<th>Thread size</th>
<th>Tightening torques</th>
<th>d</th>
<th>Thread size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strength class</td>
<td>[Nm] ±5%</td>
<td>[in lbs] ±5%</td>
<td></td>
</tr>
<tr>
<td>M6</td>
<td>8.8</td>
<td>9</td>
<td>80</td>
<td>M22</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>13</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>15</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>M8</td>
<td>8.8</td>
<td>21</td>
<td>185</td>
<td>M24</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>30</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>35</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>M10</td>
<td>8.8</td>
<td>41</td>
<td>360</td>
<td>M27</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>60</td>
<td>530</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>71</td>
<td>630</td>
<td></td>
</tr>
<tr>
<td>M12</td>
<td>8.8</td>
<td>71</td>
<td>630</td>
<td>M30</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>104</td>
<td>920</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>121</td>
<td>1070</td>
<td></td>
</tr>
<tr>
<td>M14</td>
<td>8.8</td>
<td>113</td>
<td>1000</td>
<td>M33</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>165</td>
<td>1460</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>195</td>
<td>1725</td>
<td></td>
</tr>
<tr>
<td>M16</td>
<td>8.8</td>
<td>170</td>
<td>1500</td>
<td>M36</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>250</td>
<td>2210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>300</td>
<td>2660</td>
<td></td>
</tr>
<tr>
<td>M18</td>
<td>8.8</td>
<td>245</td>
<td>2170</td>
<td>M39</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>350</td>
<td>3100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>410</td>
<td>3630</td>
<td></td>
</tr>
<tr>
<td>M20</td>
<td>8.8</td>
<td>350</td>
<td>3100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>490</td>
<td>4340</td>
<td></td>
</tr>
</tbody>
</table>