Contents

1 General remarks .. 5

2 Safety .. 6
 2.1 Safety remarks .. 6
 2.1.1 Signal words .. 6
 2.1.2 Pictograms .. 7
 2.2 Qualification of deployed personnel .. 7
 2.3 Intended application ... 7
 2.4 Application not in compliance with the intended use .. 9

3 Delivery, transport, storage and disposal ... 10
 3.1 Delivery .. 10
 3.2 Transport .. 10
 3.3 Storage .. 10
 3.3.1 Storage location ... 11
 3.3.2 Storage of couplings / flexible elements ... 11
 3.4 Disposal .. 11

4 Technical description ... 12
 4.1 Characteristics ... 12
 4.2 Specifications ... 12

5 Alignment of the units being connected .. 13
 5.1 Axial alignment ... 13
 5.2 Radial alignment .. 14
 5.3 Angular alignment ... 16

6 Mounting .. 18
 6.1 General assembly instructions .. 18
 6.2 Mounting overview .. 19
 6.3 Mounting the hub .. 20
 6.3.1 Mounting the hub with cylindrical bore and keyway 22
 6.3.2 Mounting the hub with conical bore and keyway .. 24
 6.3.3 Mounting the hub with conical oil interference fit .. 25
 6.4 Aligning the units ... 27
 6.5 Positioning the link flange assembly (1.1) ... 28
 6.6 Mounting the centrifugal protection assembly .. 28
 6.6.1 Mounting the pre-mounted centrifugal protection assembly (C) 29
 6.6.2 Mounting the adapter (4), ring (5) and centrifugal protection assembly (1.2) .. 30
 6.7 Connecting the link flange assembly and the centrifugal protection assembly 32
 6.8 Mounting the links .. 34
 6.9 After completed mounting .. 38
7 Operation... 39
 7.1 Operating faults, root causes and remedy ... 39
 7.2 Admissible overall misalignment of the coupling 39

8 Care and maintenance .. 40
 8.1 Work to be performed .. 40
 8.1.1 Cleaning the coupling ... 40
 8.1.2 Visual inspection of the coupling ... 40
 8.1.3 Visual inspection of links ... 40
 8.1.4 Visual inspection of the rubber elements / rubber segments 41
 8.1.5 Inspection of the screw connections .. 41
 8.2 Replacing defective parts ... 41

9 Dismantling .. 42
 9.1 General dismantling instructions ... 42
 9.2 Dismantling the links .. 43
 9.3 Disconnecting the link flange assembly and centrifugal protection
 assembly ... 43
 9.4 Dismantling the centrifugal protection assembly 43
 9.4.1 Dismantling the pre-mounted centrifugal protection assembly
 (C) ... 43
 9.4.2 Dismantling the centrifugal protection assembly (1.2), the
 ring (5) and the adapter (4) .. 44
 9.5 Dismantling the link flange assembly (1.1) .. 44
 9.6 Removing the mounting supports ... 44
 9.7 Dismantling the hub (if necessary) ... 44
 9.7.1 Dismantling the hub with cylindrical bore and keyway 44
 9.7.2 Dismantling the hub with conical bore and keyway 44
 9.7.3 Dismantling the hub with conical oil interference fit 45
 9.8 Reassembling the coupling .. 46

10 Wearing and spare parts .. 47

11 Annex ... 48
 11.1 CENTA data sheet D013-013 (lubricated screw connections) 48
 11.2 CENTA data sheet D016-900 Declaration of incorporation according to
 the EC Machinery Directive 2006/42/EC, Appendix II B 49
Index of illustrations

Fig. 5-1 Axial misalignment ... 13
Fig. 5-2 Radial misalignment .. 14
Fig. 5-3 Angular misalignment .. 16
Fig. 6-1 Example: 016L-00075-FS20 ... 20
Fig. 6-2 Example: 016L-00082-FS20 ... 20
Fig. 6-3 Mounting the hub with cylindrical bore and keyway 22
Fig. 6-4 Mounting the hub with conical bore and keyway 24
Fig. 6-5 Mounting the hub with conical oil interference fit 25
Fig. 6-6 Positioning the link flange assembly (1.1) 28
Fig. 6-7 Mounting the pre-mounted centrifugal protection assembly (C) 29
Fig. 6-8 Mounting the adapter (4) to the flywheel 30
Fig. 6-9 Mounting the ring (5) and centrifugal protection assembly (1.2) to
the adapter (4) .. 31
Fig. 6-10 Connecting the link flange assembly and the centrifugal protection
assembly ... 32
Fig. 6-11 Detail X .. 32
Fig. 6-12 Mounting the links ("ccw" counterclockwise rotation) 36
Fig. 6-13 Mounting the links ("cw" clockwise rotation) 36

Index of tables

Table 2-1 Shape and size of ventilation holes .. 8
Table 5-1 Permissible radial alignment tolerance 15
Table 5-2 Permissible angular alignment tolerance 17
Table 6-1 Guide to links ... 35
Table 7-1 Troubleshooting table ... 39
1 General remarks
These assembly and operating instructions form a constituent part of the coupling delivery and must be kept in an easily accessible place at all times.

CENTA products are developed and produced to quality standard DIN EN ISO 9001:2000.

In the interests of further development, CENTA reserves the right to make technical changes.

IMPORTANT
CENTA is unable to accept liability for damage and operating faults caused by failure to observe the operating instructions.

These operating instructions are protected under copyright to CENTA Antriebe Kirschey GmbH.

In case of technical questions, please enquire with our head office:

CENTA Antriebe
Kirschey GmbH
Bergische Strasse 7
42781 Haan
GERMANY
Phone +49-2129-912-0
Fax +49-2129-2790
centa@centa.de
www.centa.info
2 Safety

The purpose of these operating instructions is to enable users to:

- use the coupling safely and correctly
- maximize efficiency
- ensure that care and maintenance are carried out correctly

For this reason, these operating instructions must be thoroughly read and understood prior to work on and with the coupling.

WARNING

Injury and material damage can occur as a result of:

- Failure to adhere to the safety and accident prevention regulations valid at the relevant installation site

The safety and accident prevention regulations valid at the installation site in question must be adhered to when performing any of the tasks described in these operating instructions.

2.1 Safety remarks

In these operating instructions, safety remarks are indicated by a pictogram and a signal word.

2.1.1 Signal words

The following signal words are used in the safety remarks:

- **DANGER**
 Denotes the immediate threat of danger.
 If not prevented, fatal or extremely serious injuries can result.

- **WARNING**
 Denotes a potentially dangerous situation.
 If not prevented, fatal or extremely serious injuries can result.

- **CAUTION**
 Denotes a potentially dangerous situation.
 If not prevented, minor injuries and/damage to property may result.

- **IMPORTANT**
 Denotes application tips and particularly useful information. This is not a signal word denoting a dangerous or damaging situation.
2.1.2 Pictograms
Possible pictograms in the safety precautions:

- Warning of a hazardous area
- Do not switch
- Use protective gloves
- Use protective goggles

2.2 Qualification of deployed personnel
All the work described in these operating instructions may only be performed by authorized persons with adequate training and instruction.

WARNING

Injury and material damage can occur as a result of:
- Work at the coupling which is not described in these instructions

Only carry out work which is described in these operating instructions.

2.3 Intended application

WARNING

Injury and material damage can occur as a result of:
- Application not in compliance with the intended use

The couplings are intended exclusively for use in accordance with the relevant design. They may only be used under the specified conditions.
WARNING

Injuries can occur as a result of:

- Contact with rotating parts

Shield the coupling in accordance with the applicable accident prevention regulations with an enclosure.

Exception:
The coupling is encased by the driving and driven units.

The scope of delivery provided by CENTA does not include a protective enclosure.

This enclosure must fulfil the following criteria:

- Provide protection against persons gaining access to rotating parts
- Restrain any rotating parts which may be work loose
- Guarantee sufficient ventilation for the coupling

This enclosure must be made of stable steel components. In order to ensure adequate ventilation for the coupling, the enclosure must be fitted with regular openings. For safety reasons, these openings must not exceed the dimensions outlined in table 2-1.

<table>
<thead>
<tr>
<th>Component</th>
<th>Circular openings [mm]</th>
<th>Rectangular openings [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of the enclosure</td>
<td>Ø 8</td>
<td>□ 8</td>
</tr>
<tr>
<td>Side elements of the enclosure</td>
<td>Ø 8</td>
<td>□ 8</td>
</tr>
</tbody>
</table>

Table 2-1 Shape and size of ventilation holes

The enclosures must be positioned a minimum of 15 mm distant from rotating parts. The enclosure must be electrically conductive and be included in the equipotential bonding.

Before commencing long-term operation, the plant must successfully complete a test run.
2.4 Application not in compliance with the intended use

WARNING

<table>
<thead>
<tr>
<th>Injury and material damage can occur as a result of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Inadmissibly high torque</td>
</tr>
<tr>
<td>• Inadmissibly high or low speeds</td>
</tr>
<tr>
<td>• Exceeding the specified ambient temperature</td>
</tr>
<tr>
<td>• Inadmissible ambient medium</td>
</tr>
<tr>
<td>• Inadmissible coupling enclosure</td>
</tr>
<tr>
<td>• Exceeding the admissible overall misalignment values</td>
</tr>
</tbody>
</table>

Only use the coupling for the specified application.

CENTA bears no liability for damage resulting from application not in compliance with the intended use of the equipment. Should there be a change of plant parameters, the coupling design must be reviewed by CENTA (address see chapter 1).
3 Delivery, transport, storage and disposal

3.1 Delivery
After delivery, the coupling:
- must be checked for completeness and correctness of the delivery.
- must be examined for possible transport damage (which must be reported immediately to the carrier).

3.2 Transport

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury and material damage can occur as a result of:</td>
</tr>
<tr>
<td>• Incorrect transportation of couplings</td>
</tr>
<tr>
<td>Ensure that the coupling is correctly transported.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material damage to coupling components can occur as a result of:</td>
</tr>
<tr>
<td>• Contact with sharp-edged objects</td>
</tr>
<tr>
<td>Protect coupling components for transportation.</td>
</tr>
<tr>
<td>Only hoist coupling components with nylon belts or ropes.</td>
</tr>
<tr>
<td>Always cushion parts when supporting them from below.</td>
</tr>
</tbody>
</table>

Following transportation damage:
- Check the coupling carefully for damage.
- Consult the manufacturer (Address see chapter 1).

3.3 Storage

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material damage to elastic elements and rubber parts can occur as a result of:</td>
</tr>
<tr>
<td>• Incorrect storage</td>
</tr>
<tr>
<td>These parts must be stored laid flat and so they cannot distort, and protected from ozone, heat, light, moisture and solvents.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IMPORTANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubber parts are marked where possible with their production date. From this date, they may only be stored for a maximum of 5 years.</td>
</tr>
</tbody>
</table>

3.3.1 Storage location

Requirements imposed on the storage location:

- Moderately ventilated and low in dust
- Dry (max. 65% humidity)
- Temperature stabilized (-10°C to +25°C)
- Free of ozone-producing devices such as light sources and electric motors
- Free of UV light sources and direct sunlight
- Do not store solvents and disinfectants, fuels or lubricants, acids, chemicals etc. in the same location

For more details, refer to DIN 7716.

3.3.2 Storage of couplings / flexible elements

- Unpack the parts.
- Check the packaging for damage. Replace if necessary.
- Check that the wax protection on steel components is intact. If necessary, patch or renew.
- Package the parts (for prolonged periods of storage, enclose desiccant and weld into film).
- Place the parts into storage.

3.4 Disposal

<table>
<thead>
<tr>
<th>RECYCLING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensure safe, environmentally responsible disposal of operating supplies and exchange parts. For this, locally provided recycling facilities and regulations must be utilized.</td>
</tr>
</tbody>
</table>

For disposal, the coupling parts must be separated where possible and sorted according to material type.
4 Technical description

4.1 Characteristics

The CENTAX-SEC series L coupling have the following excellent characteristics, due to the combination of a torsionally flexible CENTAX element and the CENTA link coupling with axial angular movement:

- Compensation of torsional vibrations and impacts without wear.
- Compensation of major axial, radial and angular displacement with minimal restoring forces.
- Silent operation and noise damping.
- Backlash free, torsionally rigid and radially rigid.
- Low-maintenance, free of wear.
- Easy visual inspection.
- Fast exchange of components.
- No special tools required.
- The design is protected by international patents.
- Type approval from leading classification agencies.
- Tried and tested thousands of times over in tough daily operation since 1992.

4.2 Specifications

The specifications can be found in the catalogue and the dimensions in the installation drawing.
5 Alignment of the units being connected

IMPORTANT

- Align the units during the assembly.
- Align the units that are to be connected as accurately as possible. In this way, a long service life for the coupling and maximum operating misalignment values can be achieved.
 The overall misalignment is composed of the misalignment and the operating misalignment. The permissible overall misalignment values can be found in the corresponding catalogue and must not be exceeded.
- All permissible alignment tolerances apply to arrangements at operating temperatures.
 If the arrangement would be aligned at a different temperature, there would be additional deviations in the arrangement, which were produced by the difference between the aligning and operating temperature.
 For alignment, this has to be taken into account.
- After completion of assembly, check the alignment of the coupling again and if necessary correct.

5.1 Axial alignment

Determine the axial misalignment (see Fig. 5-1).

- Take installation length L from the installation drawing.
- Align the units (installation dimension = $L \pm \Delta K_{A\text{ max}}$).

Permissible axial alignment tolerance:

$\Delta K_{A\text{ max}} = 0.5 \text{ mm}$

![Fig. 5-1 Axial misalignment](image)
5.2 Radial alignment

CAUTION

Material damage to elastically installed motors can occur as a result of:

- Disregard during alignment of the extent by which the motor bearing settles

During vertical alignment, take into account the extent by which the motor bearing settles. Please enquire about specifications for the degree of settling from the motor manufacturer or motor bearing manufacturer.

Measure the radial misalignment with a dial gauge (see Fig. 5-2).

- Attach the dial gauge to the hub.
- Set the sensor of the dial gauge radially against the centering.
- Turn the hub with dial gauge and flywheel slowly by 360°.
- Align the units (calculated deviation $\Delta K_{R\max}$).

The permissible radial alignment tolerance $\Delta K_{R\max}$ can be found in the following table.

Fig. 5-2 Radial misalignment
<table>
<thead>
<tr>
<th>Size</th>
<th>Shorehardeness [Shore A]</th>
<th>$\Delta K_{R\text{ max}}$ [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 - 56</td>
<td>45 / 50 / 60</td>
<td>±0.9</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>±0.3</td>
</tr>
<tr>
<td>64, 65, 67</td>
<td>50 / 60</td>
<td>±0.9</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>±0.3</td>
</tr>
<tr>
<td>66, 69 - 71</td>
<td>50 / 60</td>
<td>±1.2</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>±0.36</td>
</tr>
<tr>
<td>72</td>
<td>50 / 60</td>
<td>±1.5</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>±0.45</td>
</tr>
<tr>
<td>75</td>
<td>50 / 60</td>
<td>±1.65</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>±0.51</td>
</tr>
<tr>
<td>78</td>
<td>50 / 60</td>
<td>±1.8</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>±0.6</td>
</tr>
<tr>
<td>80</td>
<td>50 / 60</td>
<td>±2.1</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>±0.66</td>
</tr>
<tr>
<td>81</td>
<td>50 / 60</td>
<td>±2.1</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>±0.75</td>
</tr>
<tr>
<td>82 - 90</td>
<td>50 / 60</td>
<td>±2.4</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>±0.75</td>
</tr>
</tbody>
</table>

Table 5-1 Permissible radial alignment tolerance
5.3 Angular alignment

Measure the angular misalignment with a dial gauge (see Fig. 5-3).

- Attach the dial gauge to the hub.
- Position the sensor of the dial gauge radially against flat surface at a distance R.
- Turn the hub with dial gauge and flywheel slowly by 360°.

The maximum dial gauge deflection must not exceed the value $2 \times S_w$ at any point. The permissible tolerance $S_{w\text{ max}}$ should be taken from the table below.

- Align the units (calculated deviation $\leq \Delta K_{w\text{ max}}$).

Permissible angular alignment tolerance:

$\Delta K_{w\text{ max}} = 0.2^\circ$

Fig. 5-3 Angular misalignment
<table>
<thead>
<tr>
<th>SAE J620 DIN 6288</th>
<th>R [mm]</th>
<th>$S_{W\text{ max}}$ [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>209</td>
<td>0.7</td>
</tr>
<tr>
<td>16</td>
<td>235</td>
<td>0.8</td>
</tr>
<tr>
<td>18</td>
<td>261</td>
<td>0.9</td>
</tr>
<tr>
<td>21</td>
<td>311</td>
<td>1.0</td>
</tr>
<tr>
<td>24</td>
<td>337</td>
<td>1.1</td>
</tr>
<tr>
<td>710</td>
<td>345</td>
<td>1.2</td>
</tr>
<tr>
<td>750</td>
<td>365</td>
<td>1.2</td>
</tr>
<tr>
<td>850</td>
<td>415</td>
<td>1.4</td>
</tr>
<tr>
<td>900</td>
<td>440</td>
<td>1.5</td>
</tr>
<tr>
<td>950</td>
<td>465</td>
<td>1.6</td>
</tr>
<tr>
<td>1060</td>
<td>520</td>
<td>1.8</td>
</tr>
<tr>
<td>1120</td>
<td>550</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Table 5-2 Permissible angular alignment tolerance
6 Mounting

6.1 General assembly instructions

Any work method which impairs the safety of the coupling is prohibited. The user undertakes to notify the manufacturer immediately of any changes occurring at the coupling which could impair safety (address see chapter 1).

WARNING

Injuries can occur as a result of:
- Contact with rotating parts

Before starting work at the coupling, switch off the plant and secure against unintentional start-up.

WARNING

Injury and material damage can occur as a result of:
- Assembly of the coupling in the wrong sequence

Only ever assemble the coupling in the described sequence.

WARNING

Injury and material damage can occur as a result of:
- Falling coupling components

Secure coupling components against falling to the floor.

CAUTION

Material damage to coupling components can occur as a result of:
- Contact with sharp-edged objects

Protect coupling components for transportation. Only hoist coupling components with nylon belts or ropes. Always cushion parts when supporting them from below.

CAUTION

Material damage can occur as a result of:
- Soiled joint surfaces

The surfaces that are to be joined must be free of dirt, preservatives and lubricants.
CAUTION

Material damage to coupling components can occur as a result of:
- Anaerobic adhesives (e.g. Loctite) used for screw locking

This type of screw locking medium may not be in contact with rubber parts.

IMPORTANT

- Screw preparation and tightening torque levels in accordance with CENTA data sheet D013-013 (see chapter 11.1).
- Use suitable lifting devices for assembly.
- The following assembly stages are described for coupling 016L-00075-FS20.
- Part illustration and marking may differ slightly from installation drawing and delivery state.
6.2 Mounting overview

The following figures are showing examples of possible design.

Fig. 6-1 Example: 016L-00075-FS20

Fig. 6-2 Example: 016L-00082-FS20
Mount the coupling as appropriate for the supplied design, according to the sequence described below. For supplied design and the parts built-in, see installation drawing.

- Mounting the hub, see chapter 6.3.
- Aligning the units, see chapter 5.
- Positioning the link flange assembly (1.1), see chapter 6.5.
- Mounting the centrifugal protection assembly, see chapter 6.6.
- Connecting the link flange assembly and the centrifugal protection assembly, see chapter 6.7.
- Mounting the links, see chapter 6.8.
- After completed mounting, see chapter 6.9.
6.3 Mounting the hub

- Mount the hub as appropriate for the supplied design (see installation drawing):
 - Mounting the hub with cylindrical bore and keyway, see chapter 6.3.1.
 - Mounting the hub with conical bore and keyway, see chapter 6.3.2.
 - Mounting the hub with conical oil interference fit, see chapter 6.3.3.

6.3.1 Mounting the hub with cylindrical bore and keyway

![Diagram of hub mounting](image)

Fig. 6-3 Mounting the hub with cylindrical bore and keyway

<table>
<thead>
<tr>
<th>Item</th>
<th>Info</th>
<th>Designation</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Hub</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Shaft</td>
<td></td>
<td>Customer part</td>
</tr>
<tr>
<td>a</td>
<td>Face of shaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Face of hub</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CAUTION

Material damage can occur as a result of:
- Incorrect heating of the hubs/flange hubs

Heat the hubs/flange hubs steadily in an oil bath, a fan oven, on an electric hot plate, either inductive or with a flame (ring burner).

CAUTION

Injuries can occur as a result of:
- Hot coupling components

Use suitable protective gloves.

- Heat the hub (3) to a temperature of 170° - 200°C.
- Push the hub (3) onto the shaft (A).

IMPORTANT

Face of shaft must not protrude to face of hub. Otherwise radial replacement of other coupling parts is not guaranteed.

CAUTION

Material damage can occur as a result of:
- Hot hubs/flange hubs

Before further mounting of hubs/flange hubs, allow them to cool to ambient temperature.
6.3.2 Mounting the hub with conical bore and keyway

Fig. 6-4 Mounting the hub with conical bore and keyway

<table>
<thead>
<tr>
<th>Item</th>
<th>Info</th>
<th>Designation</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Hub</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Shaft</td>
<td>Customer part</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Nut</td>
<td>Customer part</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Washer</td>
<td>Customer part</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Face of shaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Face of hub</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Push the hub (3) onto the shaft (A).
- Brace the hub (3) with the washer (H) and the nut (E) to the shaft (A).

IMPORTANT

Face of shaft must not protrude to face of hub. Otherwise radial replacement of other coupling parts is not guaranteed.
6.3.3 Mounting the hub with conical oil interference fit

- Lightly oil the cone of the shaft (A).
- Push the hub (3) onto the shaft (A).
- Remove the screw plug (19) from the hub (3).

![Fig. 6-5 Mounting the hub with conical oil interference fit](image)

<table>
<thead>
<tr>
<th>Item</th>
<th>Info</th>
<th>Designation</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>Hub</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>Screw plug</td>
<td>G¼ or G¾ see installation drawing</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>Shaft</td>
<td>Customer part</td>
</tr>
<tr>
<td>a</td>
<td></td>
<td>Face of shaft</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>Face of hub</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>Thread</td>
<td>G¼ or G¾ see installation drawing</td>
</tr>
</tbody>
</table>

- Lightly oil the cone of the shaft (A).
- Push the hub (3) onto the shaft (A).
- Remove the screw plug (19) from the hub (3).
WARNING

Injury and material damage can occur as a result of:
- Non-compliance with the operating instructions for the hydraulic pumps

Before carrying out work with the hydraulic pumps, do not fail to read their operating instructions. Only ever work with hydraulic pumps as described in their operating instructions.

WARNING

Injury and material damage can occur as a result of:
- Hydraulic fluid spraying out

Use protective goggles.

IMPORTANT

We recommend the following mounting fluids:
- For mounting:
 Oil with a viscosity 300 mm²/s at 20°C, e.g. SKF LHMF300
- For dismantling:
 Oil with a viscosity 900 mm²/s at 20°C, e.g. SKF LHDF900

- Connect the pump \(p_{\text{max}} = 3000 \text{ bar} \) for expanding the hub (3) to the thread G3/4 or G7/8 (c).
- Screw the pump for pushing on the hub to the shaft.
- Build up the oil pressure to push on the hub.

WARNING

Material damage can occur as a result of:
- Too fast increase of the expanding pressure in the hub

The increase of the expanding pressure may not exceed 35 bar/minute.

WARNING

Material damage can occur as a result of:
- Insufficient expanding pressure in the hub

If the expanding pressure is too low, the necessary pushing pressure is too high.
Slowly build up the oil pressure for expanding the hub.

Build up the oil pressure alternately until the lift path (p up) of the hub (3) is reached (for p up and reference faces, see installation drawing).

Decrease the oil pressure for expanding the hub.

Remove the pump for expanding the hub from the hub (3).

Maintain the oil pressure for pushing on the hub for one hour.

Decrease the oil pressure for pushing on the hub.

Remove the pump for pushing on the hub from the shaft.

Turn the hub (3), drain oil out of the thread G¼ or G¾ (c) and dispose correctly.

Screw the screw plug (19) into the hub (3).

IMPORTANT

Do not place a load on the hub for 24 hours.

IMPORTANT

Face of shaft must not protrude to face of hub. Otherwise radial replacement of other coupling parts is not guaranteed.

6.4 Aligning the units

- Align the units to be connected (see chapter 5).
6.5 Positioning the link flange assembly (1.1)

Fig. 6-6 Positioning the link flange assembly (1.1)

<table>
<thead>
<tr>
<th>Item</th>
<th>Info</th>
<th>Designation</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td></td>
<td>Link flange assembly</td>
<td>Pre-mounted by CENTA</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Hub</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Flywheel</td>
<td>Customer part</td>
</tr>
<tr>
<td>d</td>
<td></td>
<td>Centring for the link</td>
<td></td>
</tr>
</tbody>
</table>

- Position the link flange assembly (1.1) between the hub (3) and flywheel (B).
- Slide the link flange assembly (1.1) over the hub (3) and place down on the hub.
- The centring for the links (d) must point towards the hub (3).

6.6 Mounting the centrifugal protection assembly

- Mount the centrifugal protection assembly as appropriate for the supplied design (see installation drawing):
 - Mounting the pre-mounted centrifugal protection assembly (C), see chapter 6.6.1.
 - Mounting the adapter (4), ring (5) and centrifugal protection assembly (1.2), see chapter 6.6.2.
6.6.1 Mounting the pre-mounted centrifugal protection assembly (C)

Fig. 6-7 Mounting the pre-mounted centrifugal protection assembly (C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Info</th>
<th>Designation</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Link flange assembly</td>
<td>Pre-mounted by CENTA</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Centrifugal protection assembly</td>
<td>Pre-mounted by CENTA</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Adapter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Screw</td>
<td>If ordered</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Washer</td>
<td>If ordered</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Flywheel</td>
<td>Customer part</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Pre-mounted centrifugal protection assembly</td>
<td>Pre-mounted by CENTA</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>Forcing thread</td>
<td>For dismantling</td>
<td></td>
</tr>
</tbody>
</table>

- Push the pre-mounted centrifugal protection assembly (C) into the centring of the flywheel (B).
- Screw the pre-mounted centrifugal protection assembly (C) to the flywheel (B) using the screws (30) and the washers (31).

IMPORTANT

Tightening torques for elements to connect couplings with customer parts could deviate from CENTA data sheet D013-013. Consider specifications on installation drawing.
6.6.2 Mounting the adapter (4), ring (5) and centrifugal protection assembly (1.2)

- Push the adapter (4) into the centring of the flywheel (B).
- Screw the adapter (4) to the flywheel (B) using the screws (30) and the washers (31).

IMPORTANT

Tightening torques for elements to connect couplings with customer parts could deviate from CENTA data sheet D013-013. Consider specifications on installation drawing.
Fig. 6-9 Mounting the ring (5) and centrifugal protection assembly (1.2) to the adapter (4)

<table>
<thead>
<tr>
<th>Item</th>
<th>Info</th>
<th>Designation</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td></td>
<td>Centrifugal protection assembly</td>
<td>Pre-mounted by CENTA</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Adapter</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Ring</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Screw</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>flywheel</td>
<td>Customer part</td>
</tr>
</tbody>
</table>

- Push the ring (5) into the centring of the adapter (4).
- Push the centrifugal protection assembly (1.2) into the centring of the ring (5).
- Screw the centrifugal protection assembly (1.2) and the ring (5) to the adapter (4) using the screws (9).
6.7 Connecting the link flange assembly and the centrifugal protection assembly

![Diagram showing the connection of the link flange assembly and the centrifugal protection assembly.](image)

Fig. 6-10 Connecting the link flange assembly and the centrifugal protection assembly

![Diagram showing detail X.](image)

Fig. 6-11 Detail X
IMPORTANT

Ensure during installation that the bolts are in the right position.

- Push the bolts (1.3.1) into the drillings (f; 2x180°) of the link flange assembly (1.1) and secure them with the circlips (1.3.3).
- Turn the link flange assembly (1.1) towards the centrifugal protection assembly (1.2) until the drillings (e) in the centrifugal protection assembly (1.2) and the bolts (1.3.1) are aligned.
- Push the link flange assembly (1.1) towards the centrifugal protection assembly (1.2) until a distance of approx. 5 mm is reached. By doing so, place the bolts (1.3.1) in the drillings (e) of the centrifugal protection assembly (1.2).
- Push the screws (1.3.5) with the washers (1.3.6) into the drillings of the link flange assembly (1.1).
- Push the sheets (1.3.2) onto the screws (1.3.5).
- Screw the link flange assembly (1.1) to the centrifugal protection assembly (1.2) and the sheets (1.3.2) using the screws (1.3.5), washers (1.3.6) and nuts (1.3.5).
6.8 Mounting the links

IMPORTANT

- The links must be mounted in such a way that they are subjected to tensile load. A differentiation is made between the direction of rotation left (ccw) and right (cw), looking towards the driving end.
- Links are packaged in sets.
- All links of a link set are the same weight.
- Only mount links in complete sets "crosswise".
- Instructions on how to mount one link are provided following. Item numbers and the part illustrations may differ slightly from the delivery state.

The following table gives an overview of the number of size of the links used.
<table>
<thead>
<tr>
<th>CENTALINK Size</th>
<th>CENTAX Size</th>
<th>Link Size</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>48/50</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>55</td>
<td>50/52/55/56</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>60/65/67</td>
<td>64/65/67</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>68</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>-</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>-</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>69/70/71</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>72</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>75</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>-</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>-</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>78/177/277</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>80/81</td>
<td>80/81</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>82/84/85</td>
<td>82/84/85</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>88</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>90</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Table 6-1 Guide to links
Fig. 6-12 Mounting the links ("ccw" counterclockwise rotation)

Fig. 6-13 Mounting the links ("cw" clockwise rotation)
Set the link unit (1) marked "Flange" on the centring fixture of the flange (3).

Position the link side with the inscription "Hub" against the centring fixture of the hub/tube (2).

Tighten the screw (7; "Flange") with the washer (8; only at size 3 and 4) and the screw (6; "Hub"), washer for centrifugal bearing (5) and the bearing unit (4; PTFE coating must be at the top) alternately by hand until the centring fixtures of the collar sleeves (1.1) are seated in the centring fixtures of the hub/tube (2) / flange (3).

Repeat the mounting section above until all links are mounted (for quantity of the links, please see the table guide to links).

Fasten the screws (6 and 7) of the link unit (1) by required tightening torque "crosswise".
After completed mounting

WARNING

<table>
<thead>
<tr>
<th>Injury and material damage can occur as a result of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Loose screw connections</td>
</tr>
</tbody>
</table>

Before commissioning, the tightening torque levels of all screws must be checked and corrected if necessary.

Before commencing long-term operation, the plant must successfully complete a test run.
7 Operation

WARNING

Injury and material damage can occur as a result of:
- Worn coupling components

If the running noises change and/or vibrations occur turn the plant off immediately.

Determine the fault and its root cause, and remedy. The troubleshooting process is simplified by the table in the next chapter. On principle in case of a fault, an analysis of the entire plant should be performed.

7.1 Operating faults, root causes and remedy

<table>
<thead>
<tr>
<th>Faults</th>
<th>Possible root causes</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running noises or vibrations in the plant</td>
<td>Alignment error</td>
<td>1. Switch off the plant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Check alignment, correct if applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Trial run</td>
</tr>
<tr>
<td>Loose screws</td>
<td>1. Switch off the plant</td>
<td>2. Check alignment, correct if applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Check screw torque levels and correct if necessary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Trial run</td>
</tr>
<tr>
<td>Breakage of the rubber element</td>
<td>Alignment error</td>
<td>1. Switch off the plant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Exchange defective parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Check alignment, correct if applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Trial run</td>
</tr>
<tr>
<td>Inadmissibly high torque</td>
<td></td>
<td>1. Switch off the plant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Exchange defective parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Check alignment, correct if applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Trial run</td>
</tr>
</tbody>
</table>

Table 7-1 Troubleshooting table

In case of uncertainty or if you have questions, please contact our head office (address see chapter 1).

7.2 Admissible overall misalignment of the coupling

The overall misalignment values can be found in the catalogue.
8 Care and maintenance

WARNING

Injuries can occur as a result of:
- Contact with rotating parts

Before starting work at the coupling, switch off the plant and secure against unintentional start-up.

The coupling requires low maintenance. It is possible to perform a visual inspection during the regular scheduled maintenance intervals for the complete unit. Every 12 month a visual inspection is strictly required.

8.1 Work to be performed

8.1.1 Cleaning the coupling
- Remove any loose dirt from the coupling.

8.1.2 Visual inspection of the coupling
- Inspect the coupling for cracks, chips or missing parts.
- Replace faulty and missing parts.

8.1.3 Visual inspection of links
- Make a visual inspection of the links every 12 months.

Pay particular attention to the rubber bushes of the links. Squash folds and small cracks of up to 1 mm may be considered normal.
In the case of crack depths in excess of 1 mm, or detachment of the rubber-to-metal bond, the links must be exchanged.

IMPORTANT

Exchange the links:
- In the event of damage
- When replacing the rubber elements

IMPORTANT

- Links are packaged in sets.
- All links of a link set are the same weight.
- Only mount or replace links in complete sets.
8.1.4 **Visual inspection of the rubber elements / rubber segments**

<table>
<thead>
<tr>
<th>IMPORTANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchange the rubber elements / rubber segments in the event that:</td>
</tr>
<tr>
<td>• The wear specifications given in W000-00002 are exceeded</td>
</tr>
</tbody>
</table>

- Assess the rubber elements / rubber segments as described in CENTA guidelines W000-00002.

8.1.5 **Inspection of the screw connections**

- Check the tightening torque levels of all screws and if necessary, correct.

8.2 **Replacing defective parts**

- Remove the coupling as described in chapter 9.
- Replace wearing parts.
- Mount the coupling as described in chapter 6.
9 Dismantling
9.1 General dismantling instructions

Any work method which impairs the safety of the coupling is prohibited. The user undertakes to notify the manufacturer immediately of any changes occurring at the coupling which could impair safety (address see chapter 1).

IMPORTANT

The coupling is dismantled in reverse order to the assembly process. Please refer to the illustrations in chapter 6.

WARNING

Injuries can occur as a result of:
- Contact with rotating parts

Before starting work at the coupling, switch off the plant and secure against unintentional start-up.

WARNING

Injury and material damage can occur as a result of:
- Dismantling of the coupling in the wrong sequence

Only ever dismantle the coupling in the described sequence.

WARNING

Injury and material damage can occur as a result of:
- Falling coupling components

Secure coupling components against falling to the floor.

CAUTION

Material damage to coupling components can occur as a result of:
- Contact with sharp-edged objects

Protect coupling components for transportation. Only hoist coupling components with nylon belts or ropes. Always cushion parts when supporting them from below.

IMPORTANT

Use suitable lifting devices for dismantling.
9.2 **Dismantling the links**

See Fig. 6-12 or 6-13:

- Loosen the screws (6 and 7) of the links (1) alternately ("Flange"/"Hub") and remove with washers (8; with link size 3 and 4 only), bearing unit (4) and washers for centrifugal bearing (5).
- Remove the links (1).

9.3 **Disconnecting the link flange assembly and centrifugal protection assembly**

See Fig. 6-10 and 6-11:

- Support the link flange assembly (1.1).
- Loosen the screws (1.3.5) of the connection link flange assembly (1.1) and centrifugal protection assembly (1.2).
- Separate the link flange assembly (1.1) approx. 10mm from the centrifugal protection assembly (1.2).
- Remove the screws (1.3.5) with the washers (1.3.6), the nuts (1.3.4) and the sheets (1.3.2).
- Place the link flange assembly (1.1) on the hub (3).
- Pull the circlips (1.3.3; 2x180°) from the bolts (1.3.1) and remove them as well as the bolts.

9.4 **Dismantling the centrifugal protection assembly**

- Dismantle the centrifugal protection assembly as appropriate for the supplied design (see installation drawing):
 - Dismantling the pre-mounted centrifugal protection assembly (C), see chapter 9.4.1.
 - Dismantling the centrifugal protection assembly (1.2), the ring (5) and the adapter (4), see chapter 9.4.2.

9.4.1 **Dismantling the pre-mounted centrifugal protection assembly (C)**

See Fig. 6-7:

- Loosen the screws (30) of the connection pre-mounted centrifugal protection assembly (C) and flywheel (B) and remove with the washers (31).
- Pull the pre-mounted centrifugal protection assembly (C) out of the centring of the flywheel (B) and remove.
9.4.2 Dismantling the centrifugal protection assembly (1.2), the ring (5) and the adapter (4)

See Fig. 6-9:

- Loosen and remove the screws (9) of the connection centrifugal protection assembly (1.2), ring (5) and adapter (4).
- Pull the centrifugal protection assembly (1.2) out of the centring of the ring (5) and remove.
- Pull the ring (5) out of the centring of the adapter (4) and remove.

See Fig. 6-8:

- Loosen the screws (30) of the connection adapter (4) and flywheel (B) and remove with the washers (31).
- Pull the adapter (4) out of the centring of the flywheel (B) and remove.

9.5 Dismantling the link flange assembly (1.1)

See Fig. 6-6:

- Remove the link flange assembly (1) out of the installation space.

9.6 Removing the mounting supports

- Remove all mounting supports.

9.7 Dismantling the hub (if necessary)

- Dismantle the hub (3) as appropriate for the supplied design (see installation drawing):
 - Dismantling the hub with cylindrical bore and keyway, see chapter 9.7.1.
 - Dismantling the hub with conical bore and keyway, see chapter 9.7.2.
 - Dismantling the hub with conical oil interference fit, see chapter 9.7.3.

9.7.1 Dismantling the hub with cylindrical bore and keyway

See Fig. 6-3:

- Remove the hub (3) from the shaft (A).

9.7.2 Dismantling the hub with conical bore and keyway

See Fig. 6-4:

- Loosen the nut (E) and remove with the washers (H).
- Remove the hub (3) from the shaft (A).
9.7.3 Dismantling the hub with conical oil interference fit

See Fig. 6-5:

WARNING

<table>
<thead>
<tr>
<th>Injury and material damage can occur as a result of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Non-compliance with the operating instructions for the hydraulic pumps</td>
</tr>
</tbody>
</table>

Before carrying out work with the hydraulic pumps, do not fail to read their operating instructions. Only ever work with hydraulic pumps as described in their operating instructions.

WARNING

<table>
<thead>
<tr>
<th>Injury and material damage can occur as a result of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hydraulic fluid spraying out</td>
</tr>
</tbody>
</table>

Use protective goggles.

WARNING

<table>
<thead>
<tr>
<th>Injuries and material damages can occur by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Suddenly loosening hubs</td>
</tr>
</tbody>
</table>

Secure the hub with a hydraulic tool against sudden axial loosening.

IMPORTANT

We recommend the following mounting fluids:

- For mounting:
 Oil with a viscosity 300 mm2/s at 20°C, e.g. SKF LHMF300
- For dismantling:
 Oil with a viscosity 900 mm2/s at 20°C, e.g. SKF LHDF900

- Remove the screw plug (19) from the hub (3).
- Connect the pump ($p_{\text{max}} = 3000$ bar) to the thread G¼ or G¾ (c) of hub (3) to expand the hub.
- Screw the pump to the shaft (A), in order to hold the hub.
- Build up oil pressure in order to hold the hub.
WARNING

Material damage can occur as a result of:
- Too fast increase of the expanding pressure in the hub

The increase of the expanding pressure may not exceed **35 bar/minute**.

- Slowly build up oil pressure to expand the hub (\(p_{\text{max}} = 1500\text{ bar}\)).
- Slowly reduce the oil pressure for holding the hub.
- Slowly reduce the oil pressure for expanding the hub.
- Repeat the above mounting section until the hub is completely released from the shaft.
- Remove the pump for holding the hub from the shaft (A).
- Remove pump for expanding the hub from the hub (3).
- Turn the hub (3), drain oil out of the thread G¼ or G¾ (c) and dispose correctly.
- Screw the screw plug (19) into the hub (6).
- Remove the hub (3) from the shaft (A).

9.8 Reassembling the coupling

- Reassemble the coupling as described in chapter 6.
10 Wearing and spare parts

WARNING

<table>
<thead>
<tr>
<th>Injury and material damage can occur as a result of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Mounting and/or utilization of non-original CENTA parts</td>
</tr>
<tr>
<td>Never use parts from other manufacturers.</td>
</tr>
</tbody>
</table>

A stock of the most important wearing and spare parts is the most important condition to ensure that the coupling is functional and ready for operation at all times.

We only provide a warranty for CENTA original parts.

Wearing parts of this coupling:
- The link kits. These contain all screws, washers and bearing units. In the event that links or rubber bushes of the link are faulty, they must be replaced as a complete set.
- The rubber element(s). When exchanging the rubber element(s), all screw connections must be renewed. These must be ordered separately.

IMPORTANT

- Links are packaged in sets.
- All links of a link set are the same weight.
- Only mount or replace links in complete sets.

When ordering a spare, specify:
- Order no.
- Coupling order no.
- Drawing no.
11 Annex

11.1 CENTA data sheet D013-013 (lubricated screw connections)

Validity:
For all non-dynamically stressed screw connections with** lubricated** shank bolts in accordance with ISO 4014, ISO 4017 and ISO 4762 (DIN 912) with metric standard thread in accordance with DIN ISO 262, unless other specifications are given on CENTA documents.

Preparation of parts that are to be screwed together:
The joining areas must be free of dirt, preservatives and lubricants.

Preparation of screws that ARE NOT secured with liquid screw locking medium:
Give the screws extra lubrication with motor oil under the screw head and in the thread.

Preparation of screws that ARE secured with liquid screw locking medium:
Give the screws extra lubrication with motor oil under the screw head. Remove all grease from the thread.

Screw tightening method:
Screw in (by hand with torque wrench).

<table>
<thead>
<tr>
<th>d</th>
<th>Thread size</th>
<th>Tightening torques</th>
<th>d</th>
<th>Thread size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strength class</td>
<td>[Nm] ±5%</td>
<td>[in lbs] ±5%</td>
<td>Strength class</td>
</tr>
<tr>
<td>M6</td>
<td>8.8</td>
<td>9</td>
<td>80</td>
<td>M22</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>13</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>15</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>M8</td>
<td>8.8</td>
<td>21</td>
<td>185</td>
<td>M24</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>30</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>35</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>M10</td>
<td>8.8</td>
<td>41</td>
<td>360</td>
<td>M27</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>60</td>
<td>530</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>71</td>
<td>630</td>
<td></td>
</tr>
<tr>
<td>M12</td>
<td>8.8</td>
<td>71</td>
<td>630</td>
<td>M30</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>104</td>
<td>920</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>121</td>
<td>1070</td>
<td></td>
</tr>
<tr>
<td>M14</td>
<td>8.8</td>
<td>113</td>
<td>1000</td>
<td>M33</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>165</td>
<td>1460</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>195</td>
<td>1725</td>
<td></td>
</tr>
<tr>
<td>M16</td>
<td>8.8</td>
<td>170</td>
<td>1500</td>
<td>M36</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>250</td>
<td>2210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>300</td>
<td>2660</td>
<td></td>
</tr>
<tr>
<td>M18</td>
<td>8.8</td>
<td>245</td>
<td>2170</td>
<td>M39</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>350</td>
<td>3100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>410</td>
<td>3630</td>
<td></td>
</tr>
<tr>
<td>M20</td>
<td>8.8</td>
<td>350</td>
<td>3100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>490</td>
<td>4340</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>580</td>
<td>5130</td>
<td></td>
</tr>
</tbody>
</table>
11.2 CENTA data sheet D016-900
Declaration of incorporation according to the EC Machinery Directive 2006/42/EC, Appendix II B

Manufacturer: CENTA Antriebe Kirschey GmbH
Bergische Strasse 7
42781 Haan / GERMANY

Contact: Phone +49-2129-912-0
Fax +49-2129-2790
centa@centa.de
www.centa.info

We herewith declare that the incomplete machine

Product: Highly elastic coupling CENTAX-L
Model / series code: CX-L / 016L
Installation size: 50…90
Design: all
Serial number: according to shipping documents, if applicable

- provided this is possible as far as the scope of supply is concerned - complies with the following basic requirements of the Machinery Directive 2006/42/EC Appendix I, subchapters 1.1.2, 1.1.3, 1.1.5, 1.3.2, 1.3.3, 1.3.4 and 1.5.4.

In addition, we declare that the special technical documents for this incomplete machine were compiled according to Appendix VII Part B and undertake to forward these to the market monitoring authorities by request via our "Documentation Department".

Commissioning of the incomplete machine is interdicted until the incomplete machine has been incorporated in a machine and the latter complies with the provisions of the EC Machinery Directive and the EC Declaration of Conformity according to Appendix II A is on hand.

The declaration is invalidated by every modification to the delivered parts.

Authorised representative for the compilation of the relevant technical documents:

by order of Gunnar Anderseck
(Authorised Person Documentation)

Declaration of incorporation was issued:

by proxy Dipl.-Ing. Jochen Exner
(Design Management)

Haan, 09.12.2009